基于生物信息的未知二进制协议聚类方法
作者:
作者单位:

1.四川大学计算机学院;2.四川大学网络空间安全学院

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

基础加强计划重点项目(2019-JCJQ-ZD-113)


Unknown binary protocol clustering method based on biological information
Author:
Affiliation:

1.College of Computer Science, Sichuan University;2.School of Cyber Science and Engineering, Sichuan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协议聚类是协议逆向工程技术中非常重要的一步,针对二进制协议更加透明且满足的协议种类更加广泛的特点,提出了一种基于基因和蛋白质生物信息的二进制协议聚类方法,能够从原始序列角度对大量协议直接进行聚类.本文方法首先将原始二进制报文转化成四进制基因形式,使用快速聚类方法计算碱基两两组合的kseed值生成距离矩阵,并用UPGMA计算最小距离生成树得到初始分簇;其次,将每一簇四进制协议报文转化成十六进制蛋白质链,得到序列更有语义的方式并采用基于改进mBed算法的聚类方法将其进行高精度聚类.通过对已知和未知协议单纯和混合场景下的测试表明,该方法能够对二进制协议实现高效并且高准确率的聚类,具有较高的应用价值.

    Abstract:

    Protocol clustering is a very important step in protocol reverse engineering technology. Aiming at the characteristics of binary protocols that are more transparent and satisfying a wider range of protocols, a binary protocol clustering method based on genetic and protein biological information is proposed, which can learn from the original sequence Angle to cluster protocols directly. The method firstly converts the original binary message into a quaternary gene form, uses the fast clustering method to calculate the k-seed value of the base pairwise combination to generate a distance matrix, and uses UPGMA to calculate the minimum distance spanning tree to obtain the initial cluster; A cluster of quaternary protocol messages is converted into a hexadecimal protein chain, and the sequence is obtained in a more semantic way. The clustering method based on the improved mBed algorithm is used to cluster them with high precision. Tests under pure and mixed scenarios of known and unknown protocols show that this method can achieve efficient and highaccuracy clustering of binary protocols, and has high application value.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 丛培鑫,李晓慧,王俊峰. 基于生物信息的未知二进制协议聚类方法[J]. 四川大学学报: 自然科学版, 2022, 59: 032004.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-30
  • 最后修改日期:2022-01-17
  • 录用日期:2022-01-18
  • 在线发布日期: 2022-06-01
  • 出版日期: