基于会话的图卷积递归神经网络推荐模型
作者:
作者单位:

1.四川大学计算机学院;2.78123部队

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

四川省新一代人工智能重大专项(2018GZDZX0039);四川省重点研发项目(2019YFG0521)


Sessionbased graph convolutional recurrent neural networks recommendation model
Author:
Affiliation:

1.College of Computer Science, Sichuan University;2.NO.78123??Military?of?P.L.A

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于会话的推荐是为了解决匿名用户的推荐问题,是推荐系统中的一个重要分支.现有的采用图神经网络的研究方法尽管已经取得了不错的效果,但是它们无法捕获更准确的用户会话间的潜在信息.针对上述问题,论文提出了基于会话的图卷积递归神经网络(GCRNN)推荐模型,通过图卷积网络层捕捉用户会话图的结构信息,利用递归神经网络层来获得会话的时序信息和会话之间的依赖关系,以此捕获更丰富更准确的用户会话间潜在信息,从而提升推荐效果.模型在两个公开数据集上进行广泛的实验,结果表明GCRNN优于现有的研究方法.

    Abstract:

    The session based recommendation is a subtask of recommendation system, which addresses the recommendation problem about anonymous users. Although the existing methods with the graph neural network for recommendation have achieved good results, which are insufficient to capture more accurate potential information in user’s sessions. To solve the above problem, a novel recommendation model, session based Graph Convolutional Recurrent Neural Networks (GCRNN) is proposed in this paper to capture more potential information in user’s sessions and enhance the recommendation effects. In the proposed model, the graph convolutional neural network layer is used to capture structural information in the user graphs, as well the recurrent neural network layer is utilized to obtain the temporal information and the dependency relationship between sessions to acquire more affluent and accurate potential information in sessions. We conducted extensive experiments on two public datasets, and the results show that GCRNN is superior to the state of the art methods in the sessionbased recommendation.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 曹万平,周刚,陈黎,崔兰兰. 基于会话的图卷积递归神经网络推荐模型[J]. 四川大学学报: 自然科学版, 2021, 58: 022002.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-13
  • 最后修改日期:2020-11-19
  • 录用日期:2020-12-02
  • 在线发布日期: 2021-04-02
  • 出版日期: