带认知因子的交叉鸽群算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

其它


A Crossed Pigeon-inspired Optimization Algorithm with Congnitive Factor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鸽群优化算法在求解最优问题时易早熟收敛,陷入局部最优,因此本文提出了带认知因子的交叉鸽群算法。首先,将地图指南针算子和地标算子进行联合交叉运行;然后,在地图和指南针算子中引入了非线性递增的认知因子,并将其视为运动权值的三角函数;最后,在地标算子中,引入呈三角函数递增的压缩因子,增加算法的平滑性。仿真结果表明,改进后的算法搜索成功率有很大的提高,能有效地避免早熟收敛,跳出局部极值,具有更好地寻优能力。

    Abstract:

    In solving optimal problems, pigeon-inspired optimization algorithm (PIO) is easy to premature convergence and trap in local optimum, so this paper presents a cross pigeon-inspired optimization algorithm with cognitive factors. Firstly, map the compass operator and landmark operator no longer run independently, and them are mixed together and operated crosswise; Second, in the map and compass operator the cognitive factor of nonlinear increment was introduced, and regard as the inertia weight’s trigonometric functions; Finally, in the landmark operator, a compressive factor that was increasing gradually in the form of trigonometric functions was proposed to make path smoother. Simulation results showed that the improved algorithm search success rate had greatly improved, and not only effectively avoid premature convergence, but also jump out of local minima and had better optimization ability.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 陶国娇,李智. 带认知因子的交叉鸽群算法[J]. 四川大学学报: 自然科学版, 2018, 55: 295.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-07
  • 最后修改日期:2017-04-27
  • 录用日期:2017-05-23
  • 在线发布日期: 2018-03-13
  • 出版日期: