Oustaloup分抗电路的运算特征与逼近性能分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP211;TN98

基金项目:


Operational characteristic and approximation performance analysis of Oustaloup fractance circuits
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从全新的分数微积分运算角度考察Oustaloup分抗有理逼近的运算特征与逼近性能. 以阶频特征函数与相频特征函数为理论分析基础,从零极对子系统的运算特征入手,通过子系统的零极点分布情形,探究Oustaloup分抗有理逼近的运算特征,使用相对误差函数,逼近带宽, 指标,复杂度与逼近效益等指标对其运算性能与逼近效果进行分析. 本文理论分析结果表明,阶频特征可以简洁、准确的分析Oustaloup分抗有理逼近,该分抗有理逼近速度较快、复杂度较低. 为Oustaloup分抗电路的应用提供了坚实的基础,为分数阶控制器设计提供了一定的理论依据.

    Abstract:

    In this paper, we investigated operational characteristics and approximation performance of Oustaloup fractance rational approximation from a new perspective of fractional calculus operation. Based on order-frequency characteristic and phase-frequency characteristic theoretical analysis, we start from the operational characteristics of pole-zero sub-systems, by the pole-zero recursive distribution of which, we study operational characteristics of Oustaloup fractance, and in order to analyze its operational characteristics and approximation results, relative error function,approximation bandwidth, K-index, complexity and approximation effect were used. Theoretical results showed that fractional order-frequency characteristics can analyse Oustaloup fractance rational approximation simply and exactly, the fractance rational approximation has faster approximation speed and lower complexity. Providing a solid foundation for the application of Oustaloup fractance circuit, to provide a theoretical basis for the design of fractional controller.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 刘盼盼,袁晓,陶磊,易舟. Oustaloup分抗电路的运算特征与逼近性能分析[J]. 四川大学学报: 自然科学版, 2016, 53: 353.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-03-27
  • 最后修改日期:2015-05-13
  • 录用日期:2015-05-25
  • 在线发布日期: 2016-05-30
  • 出版日期: